MINISTRE DE L'EDUCATION DE LA FORMATION		KHEBIR RIDHA 10/05/2018			
SECTION:	MATHEMATIQUES				
EPREUVE:	MATHEMATIQUES	DUREE : 4H	COEFFICIENT: 4		

Exercice n°:1 (4 points)

le plan est muni d'un repére orthonormé (o,i,j)

On donne l'ensemble des points ζ des points M(x,y) tels que : $x^2 + 4y^2 - 2x - 3 = 0$

- 1/a) Montrer que ζ est une ellipse dont on précisera le centre W et l'excentricité e
 - b) Déterminer les sommets et les foyers de ζ tracer ζ
- $2/ soit \alpha \in]0,\pi[U]\pi,2\pi[$ et M_{α} le point de coordonnées $(1+ 2cos \alpha, sin \alpha)$
 - a) Vérifier que le point M_{α} apparient à ζ
- b)Montrer qu'une équation de la tangente (T) à ζ en M_{α} est :

 $x \cos \alpha + 2y \sin \alpha - 2 - \cos \alpha = 0$

3/On désigne par N et P points d'intersection de (T) respectivement avec les droites

$$x = -1$$
 et $x = 3$

- a) Déterminer les coordonnés de N et P
- b) F étant un foyer de $\boldsymbol{\zeta}$ montrer que le tringle NPF est rectangle en F

Exercice $n^{\circ}: 2$ (4 points)

On considère la suite (u_n) d'entiers naturels définie par $u_0 = 14$, $u_{n+1} = 5u_n - 6$ pour tout entier naturel n.

- 1/a) Vérifier que pout entier naturel n , $24u_n 36 \equiv 0 \pmod{4}$
 - b) Montrer que, pour tout entier naturel n, $u_{n+2} \equiv u_n \pmod{4}$
 - c) En déduire que pour tout entier naturel **m**

$$u_{2m} \equiv 2 \pmod{4}$$
 et $u_{2m+1} \equiv 0 \pmod{4}$

- 2/ a) Montrer par récurrence que, pour tout entier naturel n, $2u_n = 5^{n+2} + 3$.
 - b) En déduire que, pour tout entier naturel n, $2u_n \equiv 28 \pmod{100}$
 - c) Déterminer les deux derniers chiffres de l'écriture décimale de u_{2018}

.

<u>Exercice n°:3</u> (5 points)

Une revue professionnelle est proposée en deux versions : une édition papier et une édition électronique consultable via internet. Il est possible de s'abonner à une seule des deux éditions ou de s'abonner à l'édition papier et à l'édition électronique. L'éditeur de la revue a chargé un centre d'appel de démarcher les personnes figurant sur une liste de lecteurs potentiels. On admet que

- lorsqu'un lecteur potentiel est contacté par un employé du centre d'appel, la probabilité qu'il s'abonne à l'édition papier est égale à 0,2 ;
- s'il s'abonne à l'édition papier, la probabilité qu'il s'abonne aussi à l'édition électronique est égale à 0,4 ;
- s'il ne s'abonne pas à l'édition papier, la probabilité qu'il s'abonne à l'édition électronique est égale à 0,1.

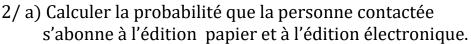
Une personne figurant sur la liste de lecteurs potentiels est contactée par un employé du centre d'appel. On note :les évènements

A « la personne s'abonne à l'édition papier

B « la personne s'abonne à l'édition électronique

1/a) Déterminer p(B/A) et p(B/ \bar{A})

b) Reproduire et compléter l'arbre suivant :



b) Justifier que la probabilité de la personne s'abonne à l'édition électronique est égale à 0,16. les évènements A et B sont-ils indépendants?

3/ Pour chacune des personnes contactée, le centre d'appel reçoit de l'éditeur de la revue

- 2 dinars si la personne ne s'abonne à aucune des deux éditions ;
- 10 dinars si la personne s'abonne uniquement à l'édition électronique ;
- 15 dinars si la personne s'abonne uniquement à l'édition papier ;
- 20 dinars si la personne s'abonne aux deux éditions.

a) Reproduire et compléter, sans donner de justification, le tableau ci-dessous donnant la loi de probabilité de la Somme reçue par le centre d'appel pour une personne contactée.

somme reçue en dinars	2	10	15	20
probabilité				

b)Proposer, en expliquant votre démarche, une estimation de la somme que le centre d'appel recevra de l'éditeur s'il parvient à contacter 5000 lecteurs potentiels.

Exercice n°: 4 (7 points)

Soit pour $n \in IN^*$, la fonction f_n définie sur] -1, $+\infty$ [par $f_n(x) = \frac{e^x}{(1+x)^n}$.

Soit (C_n) la courbe de f_n dans le plan rapporté à un repère orthonormé

- 1/a)Montrer que f_n est dérivable sur] -1 , + ∞ [et que f'_n(x) = $\frac{e^x(x+1-n)}{(x+1)^{n+1}}$
 - b)Soit $U_{_{n}}$ la valeur minimale de $f_{_{n}}$ sur l'intervalle] -1 , + $_{\infty}$ [. Montrer que $U_{_{n}}=\,f_{_{n}}\,(\,n-1\,)$
 - c) Pour $x \ge 0$ comparer $f_{n+1}(x)$ et $f_n(x)$.
 - d) En déduire que la suite $(U_n)_{n \in IN^*}$ est décroissante et qu'elle est convergente.
- 2/a)Etudier les variations de f_1 et de f_2 .
 - b) Etudier la position relative de (C_1) et (C_2) . Construire (C_1) et (C_2) .
 - c) En intégrant par partie calculer $I = \int_0^1 \frac{x e^x}{(1+x)^2} dx$.
 - d) En déduire, l'aire de la partie du plan limitée par (C_1) , (C_2) et les droite d'équations : x=0 et x=1
- 3/Pour tout $x \in \left] \frac{1}{e} \right]$, + ∞ [on pose $F(x) = \int_0^{Ln x} f_2(t) dt$.
 - a) Justifier l'existence de F (x) pour tout $x \in \frac{1}{e}$, $+ \infty$ [.
- b) Montrer que F est dérivable sur] $\frac{1}{e}$, + ∞ [et calculer F'(x)
- c) On admet que pour tout $x \in \left[\frac{1}{e}, 1 \right]$, on a $F(x) \le x \left(1 \frac{1}{1 + \ln x} \right)$ Calculer limite de F à droite en $\frac{1}{e}$.
- 4/a) A l'aide d'une intégration par parties , montrer que :

Pour tout
$$x > \frac{1}{e}$$
; $F(x) = \frac{x}{(1 + \ln x)^2} - 1 + 2 \int_0^{\ln x} f_3(t) dt$

- b) En déduire que pour tout $x \ge 1$; $F(x) \ge \frac{x}{(1 + \ln x)^2} 1$.
- c) Calculer $\lim_{x \to +\infty} F(x)$.
- 5/ Montrer que F est une bijection de] $\frac{1}{e}$, + ∞ [sur IR.